Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
EMBO J ; 43(9): 1770-1798, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565950

RESUMO

The cancer epigenome has been studied in cells cultured in two-dimensional (2D) monolayers, but recent studies highlight the impact of the extracellular matrix and the three-dimensional (3D) environment on multiple cellular functions. Here, we report the physical, biochemical, and genomic differences between T47D breast cancer cells cultured in 2D and as 3D spheroids. Cells within 3D spheroids exhibit a rounder nucleus with less accessible, more compacted chromatin, as well as altered expression of ~2000 genes, the majority of which become repressed. Hi-C analysis reveals that cells in 3D are enriched for regions belonging to the B compartment, have decreased chromatin-bound CTCF and increased fusion of topologically associating domains (TADs). Upregulation of the Hippo pathway in 3D spheroids results in the activation of the LATS1 kinase, which promotes phosphorylation and displacement of CTCF from DNA, thereby likely causing the observed TAD fusions. 3D cells show higher chromatin binding of progesterone receptor (PR), leading to an increase in the number of hormone-regulated genes. This effect is in part mediated by LATS1 activation, which favors cytoplasmic retention of YAP and CTCF removal.


Assuntos
Neoplasias da Mama , Fator de Ligação a CCCTC , Cromatina , Proteínas Serina-Treonina Quinases , Humanos , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Cromatina/metabolismo , Cromatina/genética , Feminino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Via de Sinalização Hippo
2.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37989525

RESUMO

The genome is organized in functional compartments and structural domains at the sub-megabase scale. How within these domains interactions between numerous cis-acting enhancers and promoters regulate transcription remains an open question. Here, we determined chromatin folding and composition over several hundred kb around estrogen-responsive genes in human breast cancer cell lines after hormone stimulation. Modeling of 5C data at 1.8 kb resolution was combined with quantitative 3D analysis of multicolor FISH measurements at 100 nm resolution and integrated with ChIP-seq data on transcription factor binding and histone modifications. We found that rapid estradiol induction of the progesterone gene expression occurs in the context of preexisting, cell type-specific chromosomal architectures encompassing the 90 kb progesterone gene coding region and an enhancer-spiked 5' 300 kb upstream genomic region. In response to estradiol, interactions between estrogen receptor α (ERα) bound regulatory elements are reinforced. Whereas initial enhancer-gene contacts coincide with RNA Pol 2 binding and transcription initiation, sustained hormone stimulation promotes ERα accumulation creating a regulatory hub stimulating transcript synthesis. In addition to implications for estrogen receptor signaling, we uncover that preestablished chromatin architectures efficiently regulate gene expression upon stimulation without the need for de novo extensive rewiring of long-range chromatin interactions.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Humanos , Feminino , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Progesterona , Elementos Facilitadores Genéticos/genética , Cromatina/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estradiol/farmacologia
3.
PLoS Pathog ; 19(3): e1011224, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996041

RESUMO

Mosquito transmission of dengue viruses to humans starts with infection of skin resident cells at the biting site. There is great interest in identifying transmission-enhancing factors in mosquito saliva in order to counteract them. Here we report the discovery of high levels of the anti-immune subgenomic flaviviral RNA (sfRNA) in dengue virus 2-infected mosquito saliva. We established that sfRNA is present in saliva using three different methods: northern blot, RT-qPCR and RNA sequencing. We next show that salivary sfRNA is protected in detergent-sensitive compartments, likely extracellular vesicles. In support of this hypothesis, we visualized viral RNAs in vesicles in mosquito saliva and noted a marked enrichment of signal from 3'UTR sequences, which is consistent with the presence of sfRNA. Furthermore, we show that incubation with mosquito saliva containing higher sfRNA levels results in higher virus infectivity in a human hepatoma cell line and human primary dermal fibroblasts. Transfection of 3'UTR RNA prior to DENV2 infection inhibited type I and III interferon induction and signaling, and enhanced viral replication. Therefore, we posit that sfRNA present in salivary extracellular vesicles is delivered to cells at the biting site to inhibit innate immunity and enhance dengue virus transmission.


Assuntos
Aedes , Culicidae , Dengue , Flavivirus , Animais , Humanos , Flavivirus/genética , RNA Subgenômico , Saliva/metabolismo , Regiões 3' não Traduzidas , Replicação Viral , RNA Viral/genética , RNA Viral/metabolismo
4.
Cell Rep ; 41(12): 111839, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36543130

RESUMO

Studying the similarities and differences in genomic interactions between species provides fertile grounds for determining the evolutionary dynamics underpinning genome function and speciation. Here, we describe the principles of 3D genome folding in vertebrates and show how lineage-specific patterns of genome reshuffling can result in different chromatin configurations. We (1) identified different patterns of chromosome folding in across vertebrate species (centromere clustering versus chromosomal territories); (2) reconstructed ancestral marsupial and afrotherian genomes analyzing whole-genome sequences of species representative of the major therian phylogroups; (3) detected lineage-specific chromosome rearrangements; and (4) identified the dynamics of the structural properties of genome reshuffling through therian evolution. We present evidence of chromatin configurational changes that result from ancestral inversions and fusions/fissions. We catalog the close interplay between chromatin higher-order organization and therian genome evolution and introduce an interpretative hypothesis that explains how chromatin folding influences evolutionary patterns of genome reshuffling.


Assuntos
Evolução Molecular , Marsupiais , Animais , Cromossomos/genética , Mamíferos/genética , Genoma , Vertebrados/genética , Cromatina/genética
5.
Genes Dev ; 36(7-8): 451-467, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35450883

RESUMO

Genome organization plays a pivotal role in transcription, but how transcription factors (TFs) rewire the structure of the genome to initiate and maintain the programs that lead to oncogenic transformation remains poorly understood. Acute promyelocytic leukemia (APL) is a fatal subtype of leukemia driven by a chromosomal translocation between the promyelocytic leukemia (PML) and retinoic acid receptor α (RARα) genes. We used primary hematopoietic stem and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARα as a paradigm to temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during oncogenic transformation. We found that PML-RARα initiates a continuum of topologic alterations, including switches from A to B compartments, transcriptional repression, loss of active histone marks, and gain of repressive histone marks. Our multiomics-integrated analysis identifies Klf4 as an early down-regulated gene in PML-RARα-driven leukemogenesis. Furthermore, we characterized the dynamic alterations in the Klf4 cis-regulatory network during APL progression and demonstrated that ectopic Klf4 overexpression can suppress self-renewal and reverse the differentiation block induced by PML-RARα. Our study provides a comprehensive in vivo temporal dissection of the epigenomic and topological reprogramming induced by an oncogenic TF and illustrates how topological architecture can be used to identify new drivers of malignant transformation.


Assuntos
Leucemia Promielocítica Aguda , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Humanos , Fator 4 Semelhante a Kruppel , Leucemia Promielocítica Aguda/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia
6.
Nucleic Acids Res ; 50(7): 3892-3910, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35380694

RESUMO

Up to seven members of the histone H1 family may contribute to chromatin compaction and its regulation in human somatic cells. In breast cancer cells, knock-down of multiple H1 variants deregulates many genes, promotes the appearance of genome-wide accessibility sites and triggers an interferon response via activation of heterochromatic repeats. However, how these changes in the expression profile relate to the re-distribution of H1 variants as well as to genome conformational changes have not been yet studied. Here, we combined ChIP-seq of five endogenous H1 variants with Chromosome Conformation Capture analysis in wild-type and H1.2/H1.4 knock-down T47D cells. The results indicate that H1 variants coexist in the genome in two large groups depending on the local GC content and that their distribution is robust with respect to H1 depletion. Despite the small changes in H1 variants distribution, knock-down of H1 translated into more isolated but de-compacted chromatin structures at the scale of topologically associating domains (TADs). Such changes in TAD structure correlated with a coordinated gene expression response of their resident genes. This is the first report describing simultaneous profiling of five endogenous H1 variants and giving functional evidence of genome topology alterations upon H1 depletion in human cancer cells.


Assuntos
Cromatina , Histonas , Composição de Bases , Cromatina/genética , Montagem e Desmontagem da Cromatina , Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos
7.
NAR Genom Bioinform ; 4(1): lqac021, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35274099

RESUMO

Genome-wide profiling of long-range interactions has revealed that the CCCTC-Binding factor (CTCF) often anchors chromatin loops and is enriched at boundaries of the so-called Topologically Associating Domains, which suggests that CTCF is essential in the 3D organization of chromatin. However, the systematic topological classification of pairwise CTCF-CTCF interactions has not been yet explored. Here, we developed a computational pipeline able to classify all CTCF-CTCF pairs according to their chromatin interactions from Hi-C experiments. The interaction profiles of all CTCF-CTCF pairs were further structurally clustered using self-organizing feature maps and their functionality characterized by their epigenetic states. The resulting clusters were then input to a convolutional neural network aiming at the de novo detecting chromatin loops from Hi-C interaction matrices. Our new method, called LOOPbit, is able to automatically detect significant interactions with a higher proportion of enhancer-promoter loops compared to other callers. Our highly specific loop caller adds a new layer of detail to the link between chromatin structure and function.

9.
Nat Struct Mol Biol ; 28(11): 945-954, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759378

RESUMO

An increasing number of long noncoding RNAs (lncRNAs) have been proposed to act as nuclear organization factors during interphase. Direct RNA-DNA interactions can be achieved by the formation of triplex helix structures where a single-stranded RNA molecule hybridizes by complementarity into the major groove of double-stranded DNA. However, whether and how these direct RNA-DNA associations influence genome structure in interphase chromosomes remain poorly understood. Here we theorize that RNA organizes the genome in space via a triplex-forming mechanism. To test this theory, we apply a computational modeling approach of chromosomes that combines restraint-based modeling with polymer physics. Our models suggest that colocalization of triplex hotspots targeted by lncRNAs could contribute to large-scale chromosome compartmentalization cooperating, rather than competing, with architectural transcription factors such as CTCF.


Assuntos
DNA/genética , Genoma Humano/genética , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico/genética , RNA Longo não Codificante/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Simulação por Computador , Humanos
10.
Nucleic Acids Res ; 49(19): 11005-11021, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34648034

RESUMO

Cohesin exists in two variants containing STAG1 or STAG2. STAG2 is one of the most mutated genes in cancer and a major bladder tumor suppressor. Little is known about how its inactivation contributes to tumorigenesis. Here, we analyze the genomic distribution of STAG1 and STAG2 and perform STAG2 loss-of-function experiments using RT112 bladder cancer cells; we then analyze the genomic effects by integrating gene expression and chromatin interaction data. Functional compartmentalization exists between the cohesin complexes: cohesin-STAG2 displays a distinctive genomic distribution and mediates short and mid-ranged interactions that engage genes at higher frequency than those established by cohesin-STAG1. STAG2 knockdown results in down-regulation of the luminal urothelial signature and up-regulation of the basal transcriptional program, mirroring differences between STAG2-high and STAG2-low human bladder tumors. This is accompanied by rewiring of DNA contacts within topological domains, while compartments and domain boundaries remain refractive. Contacts lost upon depletion of STAG2 are assortative, preferentially occur within silent chromatin domains, and are associated with de-repression of lineage-specifying genes. Our findings indicate that STAG2 participates in the DNA looping that keeps the basal transcriptional program silent and thus sustains the luminal program. This mechanism may contribute to the tumor suppressor function of STAG2 in the urothelium.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/química , Mutação com Perda de Função , Proteínas Nucleares/genética , Transcrição Gênica , Neoplasias da Bexiga Urinária/genética , Sequência de Bases , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Anotação de Sequência Molecular , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
11.
Nat Methods ; 18(5): 456-457, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33963351
12.
Nat Commun ; 12(1): 2981, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016985

RESUMO

The spatial folding of chromosomes inside the nucleus has regulatory effects on gene expression, yet the impact of genome reshuffling on this organization remains unclear. Here, we take advantage of chromosome conformation capture in combination with single-nucleotide polymorphism (SNP) genotyping and analysis of crossover events to study how the higher-order chromatin organization and recombination landscapes are affected by chromosomal fusions in the mammalian germ line. We demonstrate that chromosomal fusions alter the nuclear architecture during meiosis, including an increased rate of heterologous interactions in primary spermatocytes, and alterations in both chromosome synapsis and axis length. These disturbances in topology were associated with changes in genomic landscapes of recombination, resulting in detectable genomic footprints. Overall, we show that chromosomal fusions impact the dynamic genome topology of germ cells in two ways: (i) altering chromosomal nuclear occupancy and synapsis, and (ii) reshaping landscapes of recombination.


Assuntos
Cromatina/metabolismo , Cromossomos/metabolismo , Recombinação Genética , Espermatócitos/metabolismo , Animais , Evolução Biológica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/genética , Pareamento Cromossômico/genética , Segregação de Cromossomos , Cromossomos/genética , Europa (Continente) , Fertilidade/genética , Técnicas de Genotipagem/métodos , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células , Análise do Sêmen , Espermatócitos/citologia
13.
NAR Genom Bioinform ; 3(1): lqab017, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33778492

RESUMO

Chromosome conformation capture (3C) technologies measure the interaction frequency between pairs of chromatin regions within the nucleus in a cell or a population of cells. Some of these 3C technologies retrieve interactions involving non-contiguous sets of loci, resulting in sparse interaction matrices. One of such 3C technologies is Promoter Capture Hi-C (pcHi-C) that is tailored to probe only interactions involving gene promoters. As such, pcHi-C provides sparse interaction matrices that are suitable to characterize short- and long-range enhancer-promoter interactions. Here, we introduce a new method to reconstruct the chromatin structural (3D) organization from sparse 3C-based datasets such as pcHi-C. Our method allows for data normalization, detection of significant interactions and reconstruction of the full 3D organization of the genomic region despite of the data sparseness. Specifically, it builds, with as low as the 2-3% of the data from the matrix, reliable 3D models of similar accuracy of those based on dense interaction matrices. Furthermore, the method is sensitive enough to detect cell-type-specific 3D organizational features such as the formation of different networks of active gene communities.

15.
Nat Commun ; 12(1): 651, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510161

RESUMO

To investigate the three-dimensional (3D) genome architecture across normal B cell differentiation and in neoplastic cells from different subtypes of chronic lymphocytic leukemia and mantle cell lymphoma patients, here we integrate in situ Hi-C and nine additional omics layers. Beyond conventional active (A) and inactive (B) compartments, we uncover a highly-dynamic intermediate compartment enriched in poised and polycomb-repressed chromatin. During B cell development, 28% of the compartments change, mostly involving a widespread chromatin activation from naive to germinal center B cells and a reversal to the naive state upon further maturation into memory B cells. B cell neoplasms are characterized by both entity and subtype-specific alterations in 3D genome organization, including large chromatin blocks spanning key disease-specific genes. This study indicates that 3D genome interactions are extensively modulated during normal B cell differentiation and that the genome of B cell neoplasias acquires a tumor-specific 3D genome architecture.


Assuntos
Linfócitos B/metabolismo , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Genoma Humano/genética , Linfócitos B/citologia , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia
16.
Nucleic Acids Res ; 49(4): 1840-1858, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33444439

RESUMO

The 3D genome is characterized by a complex organization made of genomic and epigenomic layers with profound implications on gene regulation and cell function. However, the understanding of the fundamental mechanisms driving the crosstalk between nuclear architecture and (epi)genomic information is still lacking. The plant Arabidopsis thaliana is a powerful model organism to address these questions owing to its compact genome for which we have a rich collection of microscopy, chromosome conformation capture (Hi-C) and ChIP-seq experiments. Using polymer modelling, we investigate the roles of nucleolus formation and epigenomics-driven interactions in shaping the 3D genome of A. thaliana. By validation of several predictions with published data, we demonstrate that self-attracting nucleolar organizing regions and repulsive constitutive heterochromatin are major mechanisms to regulate the organization of chromosomes. Simulations also suggest that interphase chromosomes maintain a partial structural memory of the V-shapes, typical of (sub)metacentric chromosomes in anaphase. Additionally, self-attraction between facultative heterochromatin regions facilitates the formation of Polycomb bodies hosting H3K27me3-enriched gene-clusters. Since nucleolus and heterochromatin are highly-conserved in eukaryotic cells, our findings pave the way for a comprehensive characterization of the generic principles that are likely to shape and regulate the 3D genome in many species.


Assuntos
Arabidopsis/genética , Cromossomos de Plantas , Heterocromatina , Região Organizadora do Nucléolo , Epigenoma , Genoma de Planta , Modelos Moleculares , Polímeros/química
17.
FEBS J ; 288(6): 1989-2013, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32896099

RESUMO

Giemsa staining of metaphase chromosomes results in a characteristic banding useful for identification of chromosomes and its alterations. We have investigated in silico whether Giemsa bands (G bands) correlate with epigenetic and topological features of the interphase genome. Staining of G-positive bands decreases with GC content; nonetheless, G-negative bands are GC heterogeneous. High GC bands are enriched in active histone marks, RNA polymerase II, and SINEs and associate with gene richness, gene expression, and early replication. Low GC bands are enriched in repressive marks, lamina-associated domains, and LINEs. Histone H1 variants distribute heterogeneously among G bands: H1X is enriched at high GC bands and H1.2 is abundant at low GC, compacted bands. According to epigenetic features and H1 content, G bands can be organized in clusters useful to compartmentalize the genome. Indeed, we have obtained Hi-C chromosome interaction maps and compared topologically associating domains (TADs) and A/B compartments to G banding. TADs with high H1.2/H1X ratio strongly overlap with B compartment, late replicating, and inaccessible chromatin and low GC bands. We propose that GC content is a strong driver of chromatin compaction and 3D genome organization, that Giemsa staining recapitulates this organization denoted by high-throughput techniques, and that H1 variants distribute at distinct chromatin domains. DATABASES: Hi-C data on T47D breast cancer cells have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE147627.


Assuntos
Corantes Azur , Composição de Bases/genética , Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Histonas/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatina/metabolismo , Epigênese Genética , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos
18.
Methods Mol Biol ; 2157: 35-63, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32820398

RESUMO

Chromatin Conformation Capture techniques have unveiled several layers of chromosome organization such as the segregation in compartments, the folding in topologically associating domains (TADs), and site-specific looping interactions. The discovery of this genome hierarchical organization emerged from the computational analysis of chromatin capture data. With the increasing availability of such data, automatic pipelines for the robust comparison, grouping, and classification of multiple experiments are needed. Here we present a pipeline based on the TADbit framework that emphasizes reproducibility, automation, quality check, and statistical robustness. This comprehensive modular pipeline covers all the steps from the sequencing products to the visualization of reconstructed 3D models of the chromatin.


Assuntos
Cromossomos Humanos/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Cromossomos Humanos/genética , Genoma Humano/genética , Genoma Humano/fisiologia , Humanos
19.
Curr Opin Genet Dev ; 67: 25-32, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33253996

RESUMO

The intrinsic dynamic nature of chromosomes is emerging as a fundamental component in regulating DNA transcription, replication, and damage-repair among other nuclear functions. With this increased awareness, reinforced over the last ten years, many new experimental techniques, mainly based on microscopy and chromosome conformation capture, have been introduced to study the genome in space and time. Owing to the increasing complexity of these cutting-edge techniques, computational approaches have become of paramount importance to interpret, contextualize, and complement such experiments with new insights. Hence, it is becoming crucial for experimental biologists to have a clear understanding of the diverse theoretical modeling approaches available and the biological information each of them can provide.


Assuntos
Cromossomos/ultraestrutura , Modelos Teóricos , Nucleossomos/ultraestrutura , Transcrição Gênica , Cromossomos/genética , DNA/genética , DNA/ultraestrutura , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Nucleossomos/genética
20.
Nat Commun ; 11(1): 6222, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277476

RESUMO

Using Hi-C, promoter-capture Hi-C (pCHi-C), and other genome-wide approaches in skeletal muscle progenitors that inducibly express a master transcription factor, Pax7, we systematically characterize at high-resolution the spatio-temporal re-organization of compartments and promoter-anchored interactions as a consequence of myogenic commitment and differentiation. We identify key promoter-enhancer interaction motifs, namely, cliques and networks, and interactions that are dependent on Pax7 binding. Remarkably, Pax7 binds to a majority of super-enhancers, and together with a cadre of interacting transcription factors, assembles feed-forward regulatory loops. During differentiation, epigenetic memory and persistent looping are maintained at a subset of Pax7 enhancers in the absence of Pax7. We also identify and functionally validate a previously uncharacterized Pax7-bound enhancer hub that regulates the essential myosin heavy chain cluster during skeletal muscle cell differentiation. Our studies lay the groundwork for understanding the role of Pax7 in orchestrating changes in the three-dimensional chromatin conformation in muscle progenitors.


Assuntos
Diferenciação Celular/genética , Cromatina/genética , Células-Tronco Embrionárias Murinas/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Células 3T3-L1 , Animais , Células Cultivadas , Cromatina/metabolismo , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Camundongos , Músculo Esquelético/citologia , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...